
The Quest for Parallel Reasoning on the
Semantic Web

Peiqiang Li1, Yi Zeng1, Spyros Kotoulas2, Jacopo Urbani2, and Ning Zhong1,3

1 International WIC Institute, Beijing University of Technology
Beijing 100124, P.R. China.

{lipeiqiang,yzeng}@emails.bjut.edu.cn
2 Department of Computer Science, VU University Amsterdam

De Boelelaan 1081, 1081HV, Amsterdam, the Netherlands.
{kot,j.urbani}@few.vu.nl

3 Department of Life Science and Informatics, Maebashi Institute of Technology
460-1 Kamisadori-Cho, Maebashi 371-0816, Japan.

zhong@maebashi-it.ac.jp

Abstract. Traditional reasoning tools for the Semantic Web cannot
cope with Web scale data. One major direction to improve performance
is parallelization. This article surveys existing studies, basic ideas and
mechanisms for parallel reasoning, and introduces three major parallel
applications on the Semantic Web: LarKC, MaRVIN, and Reasoning-
Hadoop. Furthermore, this paper lays the ground for parallelizing unified
search and reasoning at Web scale.

1 Introduction

The Semantic Web provides services for exchanging and utilizing data, informa-
tion and knowledge in different forms on the Web. Its goal is to organize the
web of data through its semantics in a machine-understandable format that can
be utilized for problem solving on the Web. In addition, the Semantic Web is
dedicated to providing an information sharing model and platform that is conve-
nient for both human and machine to understand and cooperate [1]. Reasoning
engines are one of the foundational systems that enable computer systems to
automatically reason over Semantic Web data according to some inference rules.

Currently, Semantic Web reasoners are usually deployed on a single machine.
This solution is applicable when the datasets are relatively small. In a Web
context, it is unreasonable to expect fast enough reasoning mechanisms that work
on a single processor, especially when dealing with Web-scale RDF and OWL
datasets. Firstly, on the Web, large corpuses of semantically rich data is found,
posing new challenges to processing techniques. Secondly, the Web of data is
growing very fast and is dynamic. Thirdly, rules might be represented in different
forms, which requires a reasoning task to do preprocessing and coordination with
other reasoners [2, 3]. In the face of these new requirements, existing reasoning
methods have lost their effectiveness. Besides developing new forms of reasoning,
another solution is to parallelize the reasoning process [3–5].

2 Peiqiang Li, Yi Zeng, Spyros Kotoulas, Jacopo Urbani, and Ning Zhong

The rest of the paper is organized as follows. Section 2 summarizes the cur-
rent status for parallel reasoning outside the Semantic Web. Section 3 describes
in detail the problem of parallel reasoning on the Semantic Web. Section 4
describes LarKC, MaRVIN and Reasoning-Hadoop as three implementations.
Finally, based on the analysis of present parallel reasoning techniques on the
Semantic Web, we make some preliminary discussion on a related topic which
is yet to be fully explored: parallelizing ReaSearch (the unification of reasoning
and search) at Web scale.

2 Parallel Reasoning

It is commonly agreed that the goal of parallel reasoning is to accelerate the rea-
soning process. The major differences between a single processor-based method
and a parallel environment-based method can be summarized from two perspec-
tives: platform architecture and algorithm.

2.1 Platform Architecture Perspective

From the perspective of instruction and data streams, three types of architec-
tures are considered, namely, SIMD (single instruction stream, multiple data
streams), MISD (multiple instruction streams, single data streams), and MIMD
(multiple instruction streams, multiple data streams) [6]. From the perspective of
memory, three types of architectures are considered, namely, SMP (Symmetric
Multiprocessing), DMP (Distributed Memory Parallel), and HMS (Hierarchi-
cal Memory systems) [7]. Systems with an SMP architecture are composed of
several interconnected processors that have a shared memory. In DMP, each pro-
cessor maintains its own memory. Local memory access is fast but distributed
memory access has to be done through an interconnect network and is slow [7,
8]. HMS is a hybrid architecture which is an integration of SMP and DMP. In
this architecture, clusters of nodes have an SMP architecture internally and a
DMP architecture across clusters. Commonly-found clusters of multi-processor
or multi-core nodes are also considered to have an HMS architecture [7].

2.2 Algorithm Perspective

Besides the differences on system architecture, a set of parallel reasoning dis-
patching algorithms have also been developed. The goal for adopting parallel
reasoning is to accelerate the reasoning speed. However, as the number of ma-
chines increases, the reasoning speed may increase only sublinearly because of
communication overhead. Besides, each machine may not be assigned the same
amount of processing and thus, not run in its maximum capacity [9]. Thus, one
of the key issues for parallel reasoning algorithms is minimizing communication
while maintaining an even distribution of load (load balancing) [10]. In order
to solve this problem, several algorithms were proposed. Here we introduce two

The Quest for Parallel Reasoning on the Semantic Web 3

of them. Although they are proposed before and outside the Semantic Web, we
believe they may bring some inspiration.

The load balancing algorithm in [11] uses a matrix to denote the distance
from two arbitrary reasoning engines. Another matrix is used to represent the
mappings (task transfer from one to another) between two arbitrary reasoning
engines [11]. The reasoning engine selection strategy can be summarized as fol-
lows: the algorithm adopts the shortest path algorithm. Firstly, it tries to map
among the nearest reasoning engines, and after the mapping, remove those which
have been occupied. Then, the mapping will try those reasoning engines which
have the second shortest path. This progress repeats until all the reasoning en-
gines are assigned. The advantage for this algorithm is that it can drastically
reduce communication, its weakness is that it is centralized [11].

The load sharing by state (LDSHBS) algorithm [12] restricts the communi-
cation to the nearest reasoning engines. This algorithm uses a tree-structured
allocator which has a structure similar to a binary tree. All reasoning engines
are at the lowest level. Some nodes supervise reasoning engines in the system. If
these nodes detect that some reasoning engines are overloaded, they will remove
some tasks from them. If they find some engines are underutilized, the nodes will
allocate some additional tasks to them [12]. The advantage of this algorithm is
that it can allocate tasks locally and reduce communication. Besides, the algo-
rithm also ensures that each reasoning engine gets a reasonable number of tasks.
The disadvantage is that choosing an appropriate number of supervision nodes
might be a hard problem [12], especially for Web scale reasoning.

3 Parallelizing Semantic Web Reasoning

Since the data on the Semantic Web is mainly presented using RDF, reasoning
on the Semantic Web is mainly focused on RDFS and OWL. We can identify
two major goals in Semantic Web reasoning. The first goal is to check the con-
sistency of the web of data so that the data from different sources are well
integrated [13]. The second goal is to find new facts (implicit semantic relations)
based on existing facts and rules [13, 14].

Compared to traditional parallel processing, the Semantic Web has some ad-
ditional concerns. Firstly, there are too many nodes in a Web-scale RDF dataset,
and each node may have many predicates associated with it. This makes data
dependencies complex. Hence, partitioning RDF data is not easy. Secondly, con-
figuring the parallel hardware environment may need to meet new challenges
considering Web scale data. Since the dataset is dynamically changing and grows
very fast, we cannot assume a static environment. Thirdly, so far, there are not
many parallel reasoning algorithms which can be directly imported from other
areas to solve Semantic Web parallel reasoning. Finally, load balancing on each
machine is still a hard problem to solve, given the very skewed nature of Se-
mantic Web terms. In this light, the current state-of-the art in practical parallel
reasoning is rather poorly developed.

4 Peiqiang Li, Yi Zeng, Spyros Kotoulas, Jacopo Urbani, and Ning Zhong

For Parallel Semantic Web Reasoning, two major trends are introduced to
process reasoning in parallel, namely, data partitioning approaches, and the rule
partitioning approaches [15]. In data partitioning approaches, all rules are ap-
plied by all reasoners while data is split into smaller partitions and processed
in parallel by several reasoners [15]. In rule partitioning approaches, the rules
are partitioned into different reasoners to perform the reasoning tasks, and the
data has to go through all the reasoners [15, 16]. These studies have also shown
that effective partitioning is not easy. Better partitioning methods need to be
proposed. Some practical implementations of large-scale parallel reasoning are
described in the following section.

4 Some Solutions

Very recently, some practical implementations for parallel Semantic Web rea-
soning have been published. In this section, we are going to introduce three
parallel reasoning approaches for web-scale data: LarKC [3], MaRVIN [5], and
Reasoning-Hadoop [4]. While all of these are in the direction of parallel reasoning
on the Semantic Web, each of them has a different viewpoint.

4.1 LarKC

The Large Knowledge Collider (LarKC)4 is an open architecture and a generic
platform for massive distributed reasoning [3]. LarKC currently emphasizes on
scalability through parallelization of the execution of an open set of software
components. LarKC works as a scalable workflow engine for reasoning tasks. In
each workflow, there are several components (plug-ins) which are responsible
for diverse processing tasks, for example, identifying relevant data, transforming
data, selecting data and reasoning over data. The execution of the workflow is
overseen by a decider plug-in [3]. Since several plug-ins are invoked in a workflow,
they can be distributed among several nodes and work in parallel [17]. LarKC
parallelizes execution in the following ways:

– Invocation of plug-ins that have a parallel implementation;
– Invocation of distinct plug-ins in parallel;
– Execution of several workflows in parallel, or execution of the same workflow

with different input in parallel.

Currently, a set of LarKC plug-ins already have a parallel implementation:
A Sindice identifiers uses multiple threads (thus exploiting shared memory, mul-
tiple processor architectures), and a GATE transformer can run on supercom-
puters. MaRVIN, which will be introduced in the next section will be wrapped
as a parallel and distributed reasoner for LarKC. As work in progress, USeR-G
(Unifying Search and Reasoning from the perspective of Granualarity)5 is also
a series of methods that aims at working in a parallel environment for LarKC.
4 http://www.larkc.eu
5 http://www.iwici.org/user-g

The Quest for Parallel Reasoning on the Semantic Web 5

Currently, LarKC is considering some parallel programming models (e.g.
OpenMP, HPF (High Performance Fortran), and MPI (Message Passing Inter-
face)) and some frameworks (e.g. the Ibis framework [18]) to offer as an API
for developing parallel components. The core mechanism of OpenMP is based
on shared memory directives [19] and task decomposition, but does not provide
how to do decomposition [7]. Although HPF provides specific data decomposi-
tion, the rules of HPF may cause a too high communication overhead [7]. MPI
allows the developers to specify the distribution of the work and the data. How
and when the communication is done can also be specified [7]. According to [7]
LarKC may consider using the Ibis framework [18]. Ibis is a grid programming
environment that combines portability, flexibility and high efficiency [18]. The
parts which are relevant to LarKC are the Ibis portability layer (IPL) [18] and
the MPJ/Ibis [20].

4.2 MaRVIN

As a part of the LarKC project, MaRVIN (Massive RDF Versatile Inference
Network)6 is a parallel and distributed platform for processing large amounts of
RDF data. MaRVIN is the first practical parallel reasoning implementation [5].

The work on MaRVIN is motivated by the observation that it is hard to solve
Semantic Web problems through traditional divide-and-conquer strategies since
Semantic Web data is hard to partition [5].

MaRVIN brings forward a method named divide-conquer-swap [5] to do in-
ferencing through forward chaining (i.e. calculate the closure of the input data).
The main algorithm can be described in the following steps: First, the platform
divides the input data into several independent partitions and assigns this parti-
tions to compute nodes. Second, each compute node computes the closure of its
partition using a conventional reasoner. Then, old and new data is mixed and
new partitions are created in a distributed manner. This process is repeated until
no new triples are derived. At this point, the full closure has been calculated.

In the context of MaRVIN, the speeddate routing strategy has been devel-
oped [5]. RDFS and OWL rules are triggered by triples that share at least one
term. speeddate makes partitions in a distributed manner while increasing the
triples with the same terms that belong to the same partition. This way, the
number of partitioning-reasoning cycles that need to be performed to calculate
the full closure is reduced.

The advantages of the MaRVIN platform are the following:

– Since the partitions are of equal size, the amount of data to be stored and
the computation to be performed is evenly distributed among nodes;

– No upfront data analysis is required;
– It can support any monotonic logic by changing the conventional reasoner;
– It uses a peer-to-peer architecture. Thus, no central coordination is required;
– It shows anytime behavior, i.e. it produces results incrementally with time.

6 http://www.larkc.eu/marvin/

6 Peiqiang Li, Yi Zeng, Spyros Kotoulas, Jacopo Urbani, and Ning Zhong

The latest experiments on real-world datasets show that MaRVIN can cal-
culate the closure of 200M triples on 64 compute nodes in 7.2 minutes, yielding
a throughput of 450K triples per second.

In terms of the definitions in sections 2 and 3, MaRVIN does data partition-
ing on a HMP architecture. Compared to traditional reasoners, MaRVIN shows
higher loading speeds but is limited to calculating the closure of the input.

4.3 Reasoning-Hadoop

Reasoning-Hadoop [4] is a parallel rule-based RDFS/OWL reasoning system
built on the top of the Hadoop framework [21]. Hadoop is an opensource frame-
work mainly used for massive parallel data processing initially developed by
Yahoo! and now hosted by the Apache foundation.

Hadoop implements the MapReduce programming model. The MapReduce
programming model was developed by Google [22] and it requires that all the
information is encoded as a set of pairs of the form < key, value >. A typical
MapReduce algorithm takes as input a set of pairs, processes them using two
functions, map and reduce, and returns some new pairs as output. The program
execution is handled by the framework which splits the input set in subsets and
assigns computation to nodes in the network [22].

In the reasoning-hadoop project7 RDFS and OWL-Horst forward reasoning
has been implemented with a sequence of MapReduce algorithms. In terms of the
definitions in sections 2 and 3, Reasoning-Hadoop does both data partitioning
and rule partitioning on a DMP architecture.

In [4], it is shown that a naive implementation for RDFS reasoning performs
poorly. Thus, three non-trivial optimizations were introduced:

– the schema triples are loaded in the nodes’ main memory and the rules are
applied on the fly with the instance triples;

– the rules are applied during the reduce function, and the map function is
used to group together the triples that could lead to a duplicated derivation;

– the rules are applied in a certain order so there is no need to apply the same
rule multiple times.

The refined version of the algorithm proved to be have very high performance.
The RDFS reasoner is able to compute the closure of the 1 billion triples of the
2008 Billion Triples challenge in less than 1 hour using 33 machines [4]. This
approach currently outperforms any other published approach.

The performance of the OWL reasoner is not yet competitive. The optimiza-
tions introduced for the RDFS semantics do not apply for some of the rules of
the OWL Horst fragment. Current research is focused on finding optimizations
that apply to this fragment.

Concluding, Reasoning-Haddoop has shown that there are several advantages
in using MapReduce for reasoning in Semantic Web. First, the reasoning can

7 https://code.launchpad.net/ jrbn/+junk/reasoning-hadoop

The Quest for Parallel Reasoning on the Semantic Web 7

be done efficiently on large datasets because the Hadoop framework can be
deployed in networks with thousand of nodes. Second, the execution is handled
completely by the framework and the programmer can concentrate on the logic
of the program without worrying about the technical problems that are common
in distributed systems. The main disadvantage of this approach lies in dealing
with more complex logics. For example, the rules of the OWL Horst fragment
are more complex and more difficult to encode efficiently. However, given the
early stage of this research, a verdict is yet to be reach for the applicability of
this approach to other logics.

5 Evaluation of Parallel Semantic Web Reasoning
Approaches

Compared to traditional parallel reasoning, parallel Semantic Web reasoning ap-
proaches pose unique challenges in their evaluation. Thus, a new set of evaluation
criteria needs to be defined. We can make a distinction between functional and
non-functional characteristics of such systems.

Functional characteristics refer to the functions a system can perform. In
the context of parallel Semantic Web reasoning, we can identify the following
functional characteristics:

– Logic applied: depending on the logic implemented, various optimizations
may be possible. For example, the antecedents of the RDFS match at most
one instance triple [4]. The approach presented in the previous section ex-
ploits this fact to optimize RDFS reasoning by loading schema triples in
memory and processing instance triples as a stream. Nevertheless, this op-
timization cannot be applied to OWL horst reasoning, because antecedents
in the OWL horst ruleset may contain multiple instance triples.

– Degree of completeness: tolerating incomplete results can dramatically speed
up the reasoning tasks [2]. This is a common compromise made in search
engines. Furthermore, sometimes, the number of answers grows sublinearly
with time. Depending on the task, it may be acceptable to return a fraction
of the total answers spending a (smaller) fraction of the time that would be
required to calculate all answers. MaRVIN [5] is an example of a system with
this characteristic.

– Correctness: similarly to completeness, accepting incorrect answers may also
increase performance [2].

Non-functional characteristics refer to constraints in performing the pre-
scribed functions. Some relevant non-functional characteristics for parallel rea-
soning are:

– Triple throughput: a central measure for the performance of a reasoning
system is the number of triples it can process per second, indicating its
efficiency [4, 5].

– Query throughput: another performance measure for reasoning systems doing
query answering is the number of queries they can process per second.

8 Peiqiang Li, Yi Zeng, Spyros Kotoulas, Jacopo Urbani, and Ning Zhong

– Query response time: relevant to the previous characteristic, query latency
refers to the amount of time between posting a query and getting the answer.

– Scalability refers to the capability of a system to handle larger input and
to efficiently use additional computational resources. In parallel systems,
computational resources are usually refer to computation nodes.

– Maximum input size: depending on the approach, there may be hard limits
in the amount of data a system can handle, given some hardware. If these
limits are reached, the approach becomes impractical. These limits may be
imposed by restrictions in the available memory or hard disk space.

6 ReaSearch and Its Parallelization

Parallelizing reasoning is an attempt to solve the scalability problems for Web
scale reasoning by introducing additional computational power. Nevertheless,
because of the limitations and assumptions of traditional reasoning methods [2],
complementary methods should be developed.

6.1 The Necessity of Parallelizing ReaSearch

ReaSearch8, which stands for unifying reasoning and search to Web scale, was
proposed in [2] and is further developed in the LarKC project [3]. It emphasizes
on an interweaving process of searching an important subset from the Web of
data and do reasoning on it. The interweaving process will not stop until the
user is satisfied with the reasoning result [2], as shown in Figure 1(a) (Note that
this workflow design is a part of the search and reasoning part in LarKC [3]).
On the Semantic Web, both the search and reasoning process need to handle
massive data. Hence, the ReaSearch process need to be parallelized. ReaSearch
is a framework for unifying reasoning and search, and concrete strategies on how
to implement this framework can be developed through different methods.

USeR-G (Unifying Search and Reasoning from the viewpoint of Granularity)9

is a set of strategies that aim at combining the idea of granularity [23, 24] and
ReaSearch to provide concrete implementations of ReaSearch for the LarKC
Project. The set of strategies include: unifying search and reasoning through
multilevel completeness, multilevel specificity, multiperspective, etc [25]. In this
paper, we will not go into details of these strategies, we just mention some
processing steps in the implementation of these strategies where parallelization
is needed. For the multilevel completeness strategy, the search process needs
two parameters for the selection of important sub dataset. Namely, node de-
gree calculation and node number statistics for the whole dataset. In one of
our experiments for calculating the number of co-authors from the SwetoDBLP
dataset [25], we spend more than one hour on the 1.08G semantic dataset, which
is unacceptable, and should be parallelized. As indicated in [2], Web scale data

8 http://www.reasearch.net/
9 http://www.iwici.org/user-g

The Quest for Parallel Reasoning on the Semantic Web 9

may be over 10 billion triples. Hence, the task of calculating the node number
for the multilevel completeness strategy can be parallelized to save time. For
the multilevel specificity strategy, nodes that are distributed in different levels
of specificity can be assigned to multiple nodes in order to save processing time.
For the multiperspective strategy, since the unification of search and reasoning
can be done from multiple perspectives to meet the diverse user needs, different
perspectives can be processed in parallel so that one can get reasoning results
from all perspective almost at the same time. For all of the strategies, all of the
reasoning parts can be and should be parallelized.

6.2 A Preliminary Design for the Parallel ReaSearch Architecture

As mentioned above, parallelizing ReaSearch is not only about parallelizing rea-
soning. Both search and reasoning need to be considered in the parallel environ-
ment. In this section, we propose a preliminary parallel ReaSearch architecture.

...

(c) Meta-search Plugin Parallelization(b) Single Type Search plugin Parallelization

Type A

Search plugin

Type B

Search plugin

Type C

Search plugin

Integration Search plugin

...

Type A

Search plugin

Type A

Search plugin

...

Type A

Search plugin

ReaSearch Workflow (Designed for USeR-G) ReaSearch Workflow (Designed for USeR-G)

Type A

Reasoner

Type A

Reasoner

Input task Reasoning results

Sub task Sub result Sub task

...

...

(d) Single Type Reasoner plugin Parallelization (e) Ensemble Reasoner plugin Parallelization

Type A

Reasoner

Supervision Node

Type B

Reasoner

Type C

Reasoner
Type A

Reasoner

Input task Reasoning results

Sub task Sub result Sub task

...

Supervision Node

communication communication

Sub result Sub result

ReaSearch Workflow (Designed for USeR-G) ReaSearch Workflow (Designed for USeR-G)

(a) ReaSearch Workflow (LarKC, USeR-G)

Search Reasoning

Search Task Search Results Reasoning Task Reasoning Results

Fig. 1. A Parallel Architecture for ReaSearch.

Following the design principles of parallel reasoning [26], for a parallel ReaSearch
architecture, the nodes with different functionalities are distributed physically,
but unified logically. As mentioned in Section 4.1, the unification of search and
reasoning can be implemented in a workflow, hence the search process can be

10 Peiqiang Li, Yi Zeng, Spyros Kotoulas, Jacopo Urbani, and Ning Zhong

done in one node, and the reasoning process can be done in another. An alterna-
tive strategy, which scales better, is that the search and the reasoning processes
themselves are also parallelized.

For the search part, search plugins are parallelized as shown in Figure 1(b),(c).
In Figure 1(b), the search tasks are parallelized by dividing the dataset into sev-
eral sub datasets and each subset is handled by one search plugin and the search
results from different search plugins are independently sent to the ReaSearch
workflow for reasoning. Figure 1(c) provides an architecture for a meta-search
plugin, which was inspired by the study of meta-search engine [27] for informa-
tion retrieval. For this type of parallel search plugin, all the RDF/OWL datasets
go through different types of the search plugins (Type A,B,C, etc.), and an inte-
gration search plugin is used to integrate all the search results from different type
of search plugins and select out the most important subset of RDF/OWL data
for reasoning. The selection criterion is that if a subset of the original dataset ap-
pears in all the search results from different search plugins, then it is considered
as the most important subset and is delivered through the ReaSearch workflow
for the reasoning task. If a subset appears in only some of the search results, then
it is considered as a less important subset. Although this meta-search plugin has
a parallel architecture, its aim is not to speed up the search process. Instead, it
helps to select out the most important subset for reasoning.

For the reasoning part, two types of architectures are provided, as shown
in Figure 1(d),(e). Each of them has a supervision node, hence both of them
have centralized architectures. Reasoning is part of the ReaSearch workflow and
is working in parallel with the parallel search architecture. In the architecture
shown in Figure 1(d), reasoners are identical and apply the same rules. The
dataset is divided in several parts to be processed on different reasoners(data
partitioning). Its aim is to improve the speed of reasoning, which is similar in
spirit with Reasoning-hadoop and MaRVIN. In Figure 1(e), the sub reasoning
engines are different. This architecture refers to ensemble reasoning [28], which
is inspired from ensemble learning in the field of machine learning. This architec-
ture is not aimed at speeding up the reasoning process. The motivations behind
this approach lie in: (1) Reasoning based on Web-scale data may produce too
many results. Among these results, only some parts may be useful to a certain
user. With the different reasoning plugins involved, various reasoning results will
be obtained. If some results appear in the result sets from all reasoners, they can
be considered as more important than others. The integration node can provide
the most important reasoning results by selecting out the ones which appear in
all or most sub result sets. (2) With different reasoning plugins involved, one may
get more meaningful results compared to the first type shown in Figure 1(d).
In this case, the integration node is responsible for merging all the reasoning
results together for user investigation. In a more user-oriented scenario, the ar-
chitecture also enables users to configure how many reasoners of each type they
prefer to use for their own reasoning tasks. In this way, each type of reasoner
will have a weight on the whole architecture. When these weights are changed,
the reasoning results may also differ to meet different user needs.

The Quest for Parallel Reasoning on the Semantic Web 11

7 Conclusion

The Semantic Web brings many new problems and insights to the field of parallel
reasoning. New architectures and algorithms need to be developed to fit the
context of Web scale reasoning. LarKC, MaRVIN, and Reasoning-Hadoop are
three practical systems which have touched this area and are potentially effective.
Nevertheless, there is still much more that has not been well explored, such as
how to develop concrete strategies for unifying reasoning and search in a parallel
environment (i.e. parallelizing ReaSearch).

Moreover, through the preliminary design for the parallel ReaSearch archi-
tecture, we notice that for the reasoner part, a parallel architecture can improve
the reasoning speed while also producing more fruitful reasoning results to meet
diverse user needs. This topic needs further investigation. In this paper, we try
to provide some preliminary discussion to inspire more research results in this
area. We had some very preliminary discussions on where do ReaSearch (more
specifically, the set of methods UseR-G) should be parallelized. In future work,
we will go into deeper discussion and concrete implementations.

Acknowledgements

This study was supported by the European Union 7th framework project FP7-
215535 LarKC (Large Knowledge Collider) and VU University Amsterdam. This
paper was prepared when Yi Zeng was visiting VU University Amsterdam.

References

1. Berners-Lee, T.: The semantic web. Scientific American 6 (2001) 1–6
2. Fensel, D., van Harmelen, F.: Unifying reasoning and search to web scale. IEEE

Internet Computing 11(2) (2007) 96, 94–95
3. Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Valle,

E., Fischer, F., Huang, Z., Kiryakov, A., Lee, T., School, L., Tresp, V., Wesner,
S., Witbrock, M., Zhong, N.: Towards larkc: A platform for web-scale reasoning.
In: Proceedings of the International Conference on Semantic Computing. (2008)
524–529

4. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning
using mapreduce. In: Proceedings of the International Semantic Web Conference.
(2009)

5. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., Ten Teije, A., van Harmelen, F.:
Marvin: distributed reasoning over large-scale semantic web data. Journal of Web
Semantics (to appear)

6. Flynn, M.: Very high-speed computing systems. Proceedings of the IEEE 54(12)
(1966) 1901–1909

7. Gallizo, G., Roller, S., Tenschert, A., Witbrock, M., Bishop, B., Keller, U., van
Harmelen, F., Tagni, G., Oren, E.: Summary of parallelisation and control ap-
proaches and their exemplary application for selected algorithms or applications.
In: LarKC Project Deliverable 5.1. (2008) 1–30

12 Peiqiang Li, Yi Zeng, Spyros Kotoulas, Jacopo Urbani, and Ning Zhong

8. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers. 2 edn. Prentice Hall (2005)

9. Robert, B.: Japan’s pipedream: The fifth generation project. System and Software
September 3 (1984) 91–92

10. Ehud, S.: Systolic programming: A paradigm of parallel processing. In: Proceedings
of the international conference on Fifth Generation Computer Systems. (1984) 458–
470

11. Liu, Z., You, J.: Dynamic load-balancing on a parallel inference system. In: Pro-
ceedings of the Second IEEE Symposium on Parallel and Distributed Processing.
(1990) 58–61

12. Tan, X., Zhang, X., Gao, Q.: Load sharing algorithms for parallel inference machine
epim–ldshbs, intldsh. Chinese journal of computers (5) (1986) 321–331

13. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologiest. Elsevier,
Inc. (2008)

14. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Elsevier,
Inc. (2004)

15. Soma, S., Prasanna, V.: Parallel inferencing for owl knowledge bases. In: Proceed-
ings of the 37th International Conference on Parallel Processing. (2008) 75–82

16. Schlicht, A., Stuckenschmidt, H.: Distributed resolution for alc. In: Proceedings
of the International Workshop on Description Logic. (2008)

17. Oren, E.: Goal: Making pipline scale. Technical report, LarKC 1st Early Adopters
Workshop (June 2009)

18. van Nieuwpoort, R., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kiel-
mann, T., Bal, H.: Ibis: a flexible and efficient java based grid programming envi-
ronment. Concurrency and Computation: Practice and Experience 17(7-8) (2005)
1079–1107

19. Chapman, B., Jost, G., van der Pas, R., Kuck, D.: Using OpenMP: Portable Shared
Memory Parallel Programming. The MIT Press (2007)

20. Bornemann, M., van Nieuwpoort, R., Kielmann, T.: Mpj/ibis: a flexible and
efficient message passing platform for java. In: Proceedings of 12th European
PVM/MPI Users’ Group Meeting. (2005) 217–224

21. Hayes, P.: Rdf semantics. In: W3C Recommendation. (2004)
22. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clus-

ters. In: Proceedings of the 6th Symposium on Operating Systems Design and
Implementation. (2004) 137–150

23. Hobbs, J.: Granularity. In: Proceedings of the 9th International Joint Conference
on Artificial Intelligence. (1985) 432–435

24. Yao, Y.: A unified framework of granular computing. In: Handbook of Granular
Computing. Wiley (2008) 401–410

25. Zeng, Y., Wang, Y., Huang, Z., Zhong, N.: Unifying web-scale search and reason-
ing from the viewpoint of granularity. In: Proceedings of the 2009 International
Conference on Active Media Technology. (2009)

26. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic
web. In: Proceedings of the European Semantic Web Conference. (2005) 361–376

27. Howe, A., Dreilinger, D.: Savvysearch: a meta-search engine that learns which
search engines to query. AI Magazine 18(2) (1997) 19–25

28. Chabuk, T., Seifter, M., Salasin, J., Reggia, J.: Integrating knowledge-based and
case-based reasoning. Technical report, University of Maryland (2006)

